

Development of nanostructured electrodes for innovative electrolyzer Roberto Luigi Oliveri

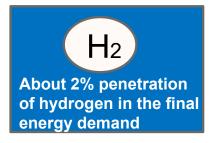
Pillar - SP3_ML12_WP1.1_A1_UNIPA_ 001

SAMOTHRACE 2nd Year:

Experimental Prototypes Demo Showcase

SAMOTHRACE PROJECT ECS00000022

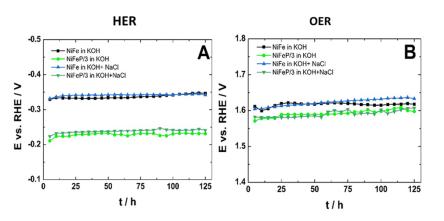
March 10th 2025

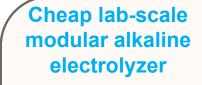


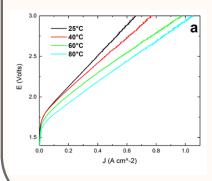
Green hydrogen is gaining increasing attention as a promising solution for the reduction of carbon dioxide emissions in various sectors of the

economy.
Opportunities for hydrogen uses up to 200kton/year in 2030

- **Industrial applications (Hard To abate sectors)**
- **Mobility application (trains and trucks)**
- Hydrogen mixing in the gas grid (blending)






Development high-performing nanostructured catalytic electrode and seawater electrolyzer components

Long-Test Stability Test in NaCl + KOH

Time: 125 hours Current Density: 50 mAcm⁻²

Goals

- Reduction of costs (~600€/KW)
- Innovation that can be developed and exploited locally
- P Hydrogen energy production with surplus energy
- Energy self-sufficiency

24 month

2023	2024	2024	2024	2025
ML6	ML8	ML10	ML12	ML14
TRL2	TRL3	TRL4	TRL5	TRL5

Research on the state of the art and first laboratory test

Early prototypes realization and laboratory tests. First results on LCA study and of behavior of electrode/electrolyte interface.

Design and realization of a new laboratory prototype of an alkaline electrolyzer with improved performance

Complete laboratory performance tests.
Development of final prototypes. First performance studies in industrial conditions

Design of a new laboratory prototype of a zero gap alkaline electrolyzer with improved performance

Realization of a device characterized by a new design of the flow plate to eliminate any machining costs Evaluate the stability of materials under operating conditions of temperature, salinity and contaminants

Current status TRL 5: Prototype
1.9V@100mA 80°C 30wt% KOH for 600h
4 cm² active area

Optimization of low-cost nanostructured electrodes with high efficiency and stability for seawater alkaline electrolysers

www.samothrace.eu

THANK YOU

VISIT OUR DEMO AT
Booth # 12
and at University of Palermo
Build 6, 2 floor

